If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+12m+2=0
a = 1; b = 12; c = +2;
Δ = b2-4ac
Δ = 122-4·1·2
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{34}}{2*1}=\frac{-12-2\sqrt{34}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{34}}{2*1}=\frac{-12+2\sqrt{34}}{2} $
| -6(-5-8a)=-19-a | | 1/5(5x+10)=7 | | 2x+3x+7x=180 | | 7x-8=6x+12 | | 7p-2(p-4)=7 | | 200m+75m+52,250=55,275+150m | | 200m-75m+52,250=55,275-150m | | 12a+4=40(a=4) | | a+5=11(a=6) | | .05x=252-x | | 3k+9/6=5(k=7) | | x-18=x+72 | | 7y+5=19(y=2) | | 3x+4=109 | | 4(x-2)+x=6x-10 | | 13x=3x2+4 | | 6(x-12)=2(3x-36) | | 6x–5=1 | | -7n=35 | | 3-2(9+2m)=4m | | x–16=25 | | 4.9t^2+9t-500=0 | | 9x+1+5x-3=180 | | 16.93+9x=17.02 | | 3^2+30=r^2 | | 23=-5+3(z-7) | | 3^2+(-30)=r^2 | | -1.9f=96.95 | | -7(5f+9)=33+8f | | 4(u-7)-6u=-12 | | 10^2*3^2=s^2 | | 48=-1.9f-(-48.95) |